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Current Research

We are continuing the work begun in Years 1 (1991 - i992) and 2 (1992 - 1993) and

reported in our earlier progress reports this ?'ear. The thrust of our gn'oup continues to be

the study of on-line fully adaptive algorithms for data compression with real-time parallel

imp]ementations. Such algorithms are key to NASA applications where high speed is

required and diverse data sets need to be handled.

Here we summarize what:s new from what was reported last ?'ear.
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• Image Compression: A paper on our basic single-pass adaptive VQ with variable size

and shaped codebook entries has appeared in the Proceedings o,f the IEEE. A new paper

was presented at the I9P,{ IEEE Data Compression Conference that describes the use

of KD-trees for a fast serial implementation that can run on a UNIX workstation. In

addition, this paper describes a number of key improvements to the basic algorithm.

The Computer Science Department at Brandeis University has recently received a 1

million dollar grant from the NSF for the purchase of parallel computing equipment;

part of these funds have already been used to purchase a 4.096 processor MASS-PAR

machine; the remainder was used to purchase a 16-node SGI Challenge machine. We

hax'e been conducting experiments with this machine on practical sub-linear parallel

implementations of the algorithm.

• Video Compression: Our work on the basic adaptive displacement estimation algo-

rithm that tracks variable shaped groups of pixels from frame t.o frame has appeared

in the same issue of the Proceedings o] the IEEE as our work on adaptive image com-

pression. In addition, we i_ave submitted for journal publication new work on the

integration of this algorithm into a complete video m_d image sequence compression

system. \\:e are in d_e process of compiling extensive experimenta 1 results with the

system.

• P_.raltd Algori_hrn._¢: Our work on sublinear algorithms for parallel text compression

has been submitted for journal publication. \Ve have conducted experh_ents with our

new approach to sub-linear text compression that closely approximates optimal com-

pression but. is much more practical to implement. Using an extremely simple parallel

model (a linear array where processors can only talk to adjacent neighbors), we have

achieved poly-log time and extremely close approximation to optimal compression. As

parallel computers become more common: algorithms such as this will provide prac-

tical ways to fully utilize the power of these machine in NASA applications involving

large amounts of data.

• Error .Propagation: A paper on our basic error resilient algorithm has been submit-

ted for journal publication. \Ve are continuing our investigation of "error resilient"

systems: and their application to lossy systems.

Appendix: As indicated above: the two papers that recently appeared in the Proceedings

of _he IEEE give good summaries of the key work performed under this contract. Attached

are copies of these papers.
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Improved Techniques for Single-Pass

Adaptive Vector Quantization

CORNEL CONSTANTINESCU AND JAMES A. STORER

Invited Paper

Constantinescu and Starer [z], 151 present a new s:nglc-p=ss
adaptive vector quanti:ation algorithm that learns a codeboak of
variable sire and .shape emrie_; they present experimerd5 on a 5at
of test images showing that with no training or prior knowledge
of ;hiedata. for a given fidelity, the compression ac,hie;'ed .37ic,rlly
equals or exceeds that of;he JPEG standard. This paper pre_er,'s
improvements in speed (by employing K.D tree_.), simplic:._. of
codebook emries, and visual qua/is?' with no Ion in ei#,er :he
amounl of carnpreasian or the S,VR as compared :o ;t;e ore,final
full.search version,

I. INTRODUCTION

Vector quzmization is a power'ful approach for loss)'

image compression when a good codebook is supplied, but

the need to have this codebook supplied in advance can

be a significant drawback. Constantinescu and Starer [Z],

[5] show how _o combine the ability of lossless adaptive

dictionary methods to process dam in a single pass with

the aN]fly of vector quantization accurately to approximate

data. For a given overall fidelfly of the decompressed imace.

the compression achieved by this new approach D'pically

equals or exceeds the JPEG standard. In addition, it often

outperforms traditional trained VQ (even in the best case,

where the codebook is specifical]y trained for the type of

data being compressed) while at the same time having a

number of additional advantages: First, it is a singie-pass

adaptive algorithm (requiring no codebook _o be provided

in advance). Second, one can provide precise guarantees

in advance on the distortion of any I x l subblock of the

image (whereas trained VQ simply finds the best match
to an available codebook). Third, with a fixed codebook

size, one can continuously vary. the fidelity/compression

tradeoff (whereas trained VQ Wpically achieves different

tradeoffs by employing multiple codebooks). Our algorithm
also enjoys some of the advantages of trained VQ, such as

fast table-lookup decoding.

Manuscrip_ received November 1. 1993" revised Janu;r,,, 15. 199_.

The author's are with the Dew, ninon| of Computer Science. Br-,.ndeis

Universiw. Waltham. MA 02254 USA.

1EEE Log Number 9z012zS.

This paper presents improvemems in speed, simplicity

of codebook entries, and visual quality with no loss in

either the amount of compression or the signal-to-noise ratio

(SNR) as compared Io the original full-search version. Sec-

tion lI reviews the basic single-pass adaptive VQ algorithm

presented in Constanfinescu and Starer [4], [5]. Section

III presents a k-d uee implementation of the dictionary

that greatly improves the speed of serial implementations

with no loss in either the amount of compression or the

SNR as compared Io the original full search version. In

fact, due _o a minor improvement in the basic algorithm

(see the end of Section lI). the experiments reported here

improve upon what is reported in Constantinescu and Starer
[4], [5]. Section IV presents a new learning heuristic that

employs only square-shaped entries. Section V presents a

new method for distortion computation that improves visual

quality without any significant sacrifice in the SNR. Section
VI mentions some current areas of research.

]l. THE BASIC SINGLE-PASS ADAPTIVE VQ ALGORITHM

In this section we review the work presented in [4],

[5]. As mentioned in the Introduction, one can view this

approach as combining ideas from adaptive lossless com-

pression and from yea:or quanti_tion.
With lossless adaptive dictionno" methods, a local dictio-

nary D is used to store a constantly changing set of smngs.

Data are compressed by replacing substrings of the input
stream that also occur in D by the corresponding index into

D; we refer to such indices as pointers. The encoding and

• decoding algorithms work in lockstep to maintain identical

copies of D (which is constantly changing). The encodes
uses a ma_ch heuristic to find a match between the incoming

characters of the input stream and the dictionarT, removes

these characters from the input stream, transmits the index

of the corresponding dictionary entry., and updates the

dictionary with an update heuristic that depends on the

current contents of the dictionary and the match that was

just found. If _here is not enough room left in the dictionary,

a deletion heuristic is used to delele an existing entry. For

001S-9219,_-'$0z.00 © 199.t IEEE
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Fig. 2. On-line adaptive \'Q.

an overview on adaptive lossless compression, see the book

by Storer [1_].

Vector quantization is a loss), method that compresses

an image by replacing subbiocks by indices into a dicfio-

nao, of subb]ocks. Traditionally, the subbiocks are all the

same size and shape and thedictiona_, must be computed

in advance by "training" on sample data. Not only can

training be computationally expensive, but "'full-sooth"

encoding :hat is guaranteed to find the closest vector

in the dictionary can also be x,e_ dine-consuming. In

practice, tree-structured dictionaries are often used. Lin [lO]

studies the performance---compiexky _radeoffs for vector

quantiz_-t]on. See Gersho and Gray [9] for an introduction

to vector quamization and references to the literature.

"l'be basic single-pass adaptive VQ a]gorilhm presented

in [4]. t5] is depicted in Fig. 2, which is followed by

Aloofithms la and lb. the Loss), Generic Encoding and

Decoding Algorithms for on-line adaptive vector quami-

zmion. Fig. I illustrates the al_oorithms by showing for

a CAT-scan chest image (Fig. l(a)), a map of how the

compressor covers the image with rectangles (Fig. l(b)),

and a portion of the dictionard,, (Fig. l(c)) about half-

way _hrou__.h the compression process. The operation of the

generic algorithms is _uided by the following heuristics:

The Growing Houris;ire The heuristic selects one grow-

ing point GP(:r,.v.q) from the available pool GPP. All

l) Initialize the local ditfiormry D to have one enu'2,.' for _eh pix_l
of the input alphabet and the growing poin:_ pool (GYP) wilh one

(or more) growing points.

2) Repeat until there are no mort [:ro_'ing points in GPP:

a) (St/err _he nt._ gro_'_'ng pol'nt from GPP:I

Use a growing heurmic to choose a uowin_ point GP from
GPP.

b) IGer the bts_ ma_eh block b :1

Use a mmch heuristic tO find a block b : in D that mrqch_

with acceptable fidelity image ¢GP. b :] (the portion :.: image

determined by GP hv,'ing the same size aS b). 7r_'_smit

[log:JD)'_ bits for the index of b :.

c) {L;pdcw D end GPP:}

.:..od each of _he blocks specified by a dirtior_ O" update
keurmir to D (if D is full, first use a deletion kturisric

to make space)

Algorithm la: Loss','Generic Encodin_ Al_.ori:hm.

1) [Initialize D and GPP by pe,"fo.-ming Step l) of the en:odint

alI:orithm.}

2) Repel! until there are no more _ro'*'in_ points in GPP:

a) /Select the next growing point from GPP:}

Perform Step 2a of ihe encoding algorithm tO obtain GP.

b) [Gel the best match block be}

Receive [lo_..,ID]" [ bils for the index b. Rot,dove b from D

and outpul b at the position de,ermined by GP.
c) I Ui'_ate D :,rid GPP:}

Per;Form Slep 2C of lhe encodJn_ _!_orJlhm

Algorithm [be Loss)' Generic Decoding Algorithm.

experiments reported here use the wave heuristic (a "wave

front" that goes from the upper left comer down to

lower fight comer). Other examples of _owing heu,'isti_

include circular (a "ball" that expands outward from the

center), diago_al (a successive "'thickening" of the maiz

diagonal), and FIFO (first-in first-out).
The Mmch Heuristic: This heuristic decides what block b

from the dictionary D best matches imageGP Ohe pardon

of the imao_e of the same shape as b defined b)' the

currently se_ecled" growing point GP). All experimental

results reponed here use the g;ee_' heuristic (chvose the

largest match possible of acceptable quality, a_:_ among
two matches of equal size, choose the one of best qt_,l-

it)'). The parameters that guide the matching process are:
The distance measure; we use the standard mean-square

measure in all experiments. The elementary subblock sit

l; tar£e matches can be divided into subblocks of constant

PROCEEDI_2GS OF THE IEEE. VOL 1:2. NO t_. jU','E IPM



Added blocks:

Fig. 3.

[] .The mulched block

['-"l .Previoufc'iy =nco_='_ image

"'OneRow + OneCo]_mn'" le',ming heu.'fslic.

size l x I, and then distance is computed as the maximum

distance among the subblocks: this prevents distortion from

being unacceptable in a sm_l] portion of a match because it
is better than needed in other areas (all experiments reported

here use l x l = 4 x 4). The r3.'pe of coverage: examples

cf image covering strategies include first coverage _here

the distance is computed only on the uncovered pz:'t of

imageGP, last coverage where the match is computed for

the entire block (except if it falls oumde the image borders).

and average coverage (used in all experiments reported

here) where the match is computed for the entire block as

for last. but on overlapped areas the resulting value is the

average value ber_,een all the values of ma_ches that happen

to cover that pixe]. The "hreshold f: a real number that
defines the maximum allowed distance (distortion) between

irnageGP and b.

The Growing Points Update Heuristic: The growing

points update heuristic is responsible for generating new

growing points after each new m._mh is made. For all

experiments reponed here, the concave comers of the

partially encoded/decoded image are chosen.

The Dictionary Upda:e Heuristic: The dictionary, update

heuristic adapts the contents of the dictiona.rf, D to the

part of the image that is currently encoded/decoded. All

experiments reponed here use the OneRow + OneColumn

dictionary update heuristic, depicted in Fig. 3, that adds

(if possible) two new blocks to the dictionz.rT, constructed

by extending the previously matched block (or part of it)
vertically and horizontally by one row.

The Deletion Heuristic: This heuristic maintains the dic-

tionary D so it can have a predefined (constant) size D=_.

All experiments reported here use the LRU heuristic (delete

the entry that has been least recently used).
Before closing this section, we should report an exper-

imental finding made after the writing of Constantinescu

and Starer [4]. Although experiments have shown that the

basic algorithm is robust over a wide choice of heuristics,

allowing growth in only one quads:me (as long as possible)

lvpically improves compression (by about 10% on average)

for 2he same SNR. Because wave growing can "'fill" the

entire image and still satisfy the above restriction, this p2per
has switched from circular (used in Cons_antinescu and

Starer [4]) to wave.

IlL K - D TREE DICTIONARY DATA STRUCTURE

The basic algorithm presemed in Constantinescu and

Starer [4], [5] encodes with simple linear search to find

matches, and is very slow if implememed on a standard se-

zfal architecture (decompression is essemia}ly table-lookup,

and is quite fast). In this section we present a new ahzorithm
based on k-d trees that reduces the search time from

minutes or even hours to a few seconds on a UNIX

workstation.

If we consider e_ch dictionary block b with kb = rnb x nb

pixeis as a point in a hb-dimensional space, the problem is

to find the closest point (best block) to a given point (image

area imogeGP) from a set of poims (diction_y of blocks);

_h2t is. a nearest neighbor search problem (e.g.. Preparata

[13], Dasarathy [6]). However, the problem has several

nomrivialpeculiarities: First. the dictionary blocks have

variable dimension (k_) and variable shape (rob and n_

can have zrbi_rar 3, values). Second, the dictionary, maintains

a dyr, amic set of blocks: in addition zo search we need
h:sertions and deletio,;s. And third, the "'best" block is

defined by a ma_ch heuristic that may use a variety of

distortion measures that work over a variety of rectangle

sizes (and 1here is always a pe_ect match to the unit

size). Typically, nearest neighbor algorithms perform time-

consuming preprocessing in order 1o have fast processing
time. This works well if the set of points is static (does not

ch_ge during processing). However, in our case the set of

points (dictionary) consists of the alphabet at the beginning
of encoding, and chan_es during encoding, on averao_e with

_wo insertions and evemual]y two deletions for each search.

We have employed a da:a structure based on k-d trees

(e.g.. Bentley [l], Bentley and Friedman [2], Overmars

and van Leeuven [12]). Each branch in the tree relies on

some discriminating dimension and a partition value. The

nonterminal nodes comzins the (two) pointers to the sons,

the parthian value, and the discriminating d_mension (which

can be data-dependent); terminal nodes (named buckers)

contains data (dictionary blocks).Because we are using

thewave growing heuristic, we can assume that a regio n

that is being matched is always "attached" to the already

compressed portion of the image at its upper left comer,

and we use the upper left 4 x 4 subblock of the region to

provide the keys for the search. To find matches that are
less than 4 pixels in either dimension, we employ a few

additional trees, as _o be discussed shortly.

A significant difference between our algorithm and Fried-

man, Bentley, and Finkel [7] algorithm is that we have a

bound on the allowable distortion (the distortion threshold-"

d) before sere-ring the search. So, we can start a range search

for the "best" block using the distortion threshold _o define

the range (instead of going first for some nearest neighbor
block, compute the distance r between this block and the

query block, and then do a range search backward--the

CO_'STANTL_'ESCU AND STORER: I_,rRovI_D TECHN}QL'ES FOR SINGLE-PASS _,D_I'TIVE \'EC'TOR QUA'<TITATION _I_. fllA_ _ 925



ChestCAT: Cat-scan chest image, 512 by 512 pixels, 8
bits per pixel.

BrMnMrS_de: .Magnetic resonance medical image that
shows a side cross-section of a head, 256 by 25(5 pixels,
8 bits per pixel; this is the medical image used by Gr_y,
Cosman, and KiskJn[GCRgl].

BraJnMrTop: Magnetic resonance medical image that
show'sa top cross-section ofa head,256 by 25fipixe]s,

8 bits per pixel.
NASA5: Band 5 of a 7-band image of Don'ddsonville,

LA; the ]e,ct compressible of the 7 bands by U.NIX

compress.
NASA6: Band 6 of a 7-band image of Donddsonvil]e,

LA; the most compressible of the 7 bands by UNIX

compress.
\VomanHat: The standardwoman inthe hat photo,5]2

by 512 pixels,8 bits per pixel.
LivlngKoom: Two people in the riving room of _n old

house with light coming in the window, 512 by 512 pix-
els, 8 bitsper pixe].

FingerPrint: An PB] fingerprint image,765 by 768 pix-
els, 8 bits per pixe]; includes some text at the top.

Hmad%Vriting: The first two parr-graphs and part of
the figure of page 165 of ]moge and Teat Comp_s.
,ion (Nluwer Ac'demic Press, b'orwel], .MA) written
by hand on a l0 inch high by 7.5 inch wide piece of

gray stationary scanned _t 128 pixels per inch, 8 bits
per pixel; _pprox3mately ].2 mRtJon bytes.

Fig. 4. Description of :he ira'.Sea.

so-called "'bounds-overlap-ball" lest). ]f xve use the range

izl - d..ri + d] for each dimension i of the query, b]ock

z (key area), deciding to So ]eft, right, or both ways in

the k-d tree depending on how this range compares whh

the panhion value r, associated whh the current]3, vished

nontermJnalnode. we end up by selecting a/l potential best

matches (all blocks which meet the distortion threshold on

the key, area), no matter what distortion measure we use

as ]ong as it is monotonic in dimension values as _el]
as in the number of dimensions (conditions required also

by Friedman. Bentley, and Finkel aloorithm). An example
of such a measure is the standard L2 (Euclidean) metric.

Although mean-square error does not satisfy this condition,

it is a bit faster _o compute (because _here is no square root

to compute) and works equally we]] in practice.

Let us now consider the comp}exity of our algorithm

when the k-d tree data structure is employed. Encoding

time is bounded by

( 'V(S(Dm":"'rn)+Q('V)+m))
0 .V +

7"

where N is the number of pixels in the image, S(.Dm_, rn)

is the maximum time to search a dictionary with a

•maximum of D_ entries each whh at most m pixels,

Q(N) is the time _o insert and delete for the growing

points queue, and r is the amount of compression (original

size/compressed size). Straightforward implementation of

1he growing heuristics we have considered uses O(lo2_ (.'V))

time b)' employing a heap data structure; however, this time

can be reduced to O(1) by implementing all heuristics in a
manner similar to FIFO. Under ideal assumptions, it can be

shown that the expected time for range search in k-d trees

is O(]og n + B), where B is the number of blocks found

(Bentley and Stanat [3], Friedman, Bentley, and Finkel [7]).

]f we take S(Dm_, m) to be O(]og (D=_)) (which from

our experiments appears to be a reasonable assumption),

the improved encoding time is

( :':]o_.(D_x))
O N+ -

r

under the reasonable assumption that m = O(log (mm,.x))-

In many applications, it may be reasonable to assume that

r is log (Dm_x), which brings the encoding time down to
O(N) time. As before, decoding is essentially table lookup,

and can be done in O(.V) time.

Some parameters of the k-d tree should be adjusted by

experimentation with real data or simulation because 1hey

reflect some compromise between time, memory space,

and retrieval quali_y _hat is generally dependent on the

application domain. After experimenting with a number of
ahematives we choose the follo',ving settings (used for all

the experiments reponed in this paper):
Bucket Size: Maximum 8 blocks per bucket. (We exper-

imemed with bucket sizes ranging from 1 to 323

Discriminating Dimension: The dimension wilh the

largest spread of values (compmed by estimating the

variance on ever), dimension of 1he key. for the 8 blocks

in the bucket). (We experimemed with random choice, and

with cyclic choice depending on the level in the tree).
Partition Value: The mean value be:wean all of the

discriminating dimension values in the bucket. (We ex-

perimented whh random values "which worked relatively

_e]l).

Range: 1.25 -d. (Even though mean-square error does

no_ satisfy the monotone properties discussed earlier, by

extending the range jusl a ]iule _o In,- 1.25 -d.zi+l.25 -d_,

the retrieval quality is as good as for full search whh an

insignificant increase in search time.)

Number ofk-d Trees: Four trees el. tZ. :3. and _'4, with

the following key sizes and block assignment:

ta has 1 x i key and contains blocks of size 1 x n or
n x 1, withn > 2.

(tz is simply a bina_, search tree).

12 has 2 x 2 key and con'ains blocks of size 2 x n or
nxZ, with n > 2.

t3 has 3 x 3 key and comains blocks of size 3 x n or

n x 3, with n _> 3 and

_4 has 4 x 4 key and contains blocks of size rn x n,
whh m, n >__4.

Regarding the number of trees to use and the key

sizes, since our algorithm is "'normalized" by using l x l

elementary areas (1 = 4 for a]l experiments reponed here),

then using a key of size at least I x I, no mauer how "'good"

a big block is on the rest. if it does not satisfy the distortion
threshold on the key area it will be rejected also by the full

search. Practically, _he improvement in selectivity by using

keys bigger than 4 x 4 does not justify the increase in the

935
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Table 1 Compare, on oi' Compression Ratios for :he Same SNR _PSNRt iE:sch of lhe.,,e columns

_,hows the same SNR i_.he co_:spondlng PSNR is shown :n paremh=,,_ _Lht compression achieved by
our algorithm v.ilh zh¢ nov. :::e sc'_rch data smscture, our ba_,Jc full-:catch al_orhhm. ",rid by JPEG.

_dt_N._. PA_ m

Ol,

"Very Good"

Quali:y Compression

SNR ,PSNR} TRE£/FULL '.1PEG

"Good"

Qualizy Compression
SNR (PSNR) TR EF_./FULI.JJPEG

"F',ir"

Qu_liiy Compression
SNR _PSNR} TREE:FULUJPEG

CheslCAT

BrzinMR Side

B,"ainMR_Top

NASA5

NASA6

Worn,HAT

Livin_Room

FingerPrint

Hand\Vrhin_

29 G6) 4.314.3/3.0

:_.._ t39) 4.114.1/_.6

27 (35) 2.812.912.4

30.5 (:I) _.l/-'.2 l.:.t

•:6 (_1.5) 22.6122._ 18A

.:_ ,-0._) _.01=.l/'JA

32 ,3_i 3.91-'01-' 3

32 135) 6.216.316.5

32 _33) 17.3/17.019.5

22 ¢29/ 8.918.9/4.8

26..5 (37) 4.$/4.9/6.1

20.5 (2_.5) 5.7/5.7/3.9

:$ (.:8.5) 5.6/L61.5.9

"0.5 t-:6.5 ) 74..1 / 80.1 / 6_.7

30 (.:51 g.6t$.8 / 13.7

:7 _3.") 7A 17..519.1

2-" C7) 26.5126.5127.3

":..5(25.5) 61 0160.1 132.0

I$ _25) 12.$/12.7/6.7

20.5 i31) 10.4110.311.5.8

15.5 (23..5) 10.-' / 10.816.6

26,36.5 ) 7.-' I7..518..5

39 _-'51 107._ / 106.5/6.5.1

27 _32.5} 1_.-'/I".5/."3..5

2-''." G0.5) 10.S/I 1.0/1-.3

22 ,:5i 37.6135.9/35.0

1";.5 (15.5) 1;2.0/1.'7.0/67.3

_..,_._._.,..._-_,
I

i-
i-'--"-'=""'7":'-'-:-'.

..X--_..... .:,C.._ ...z'.-'..l_

(.,) (bl

_ ,:...,¢_..z..__ ...Z-.
I_- .,-,-- o..- _7/--_--

(d)

o. -

• o ..... _ _..

II

(¢)

Fig. 5. (z) H-,ndWritin_ original. (b)HandWfifing JPEG ai 70-1o-l. (el HandWHling at 70-1o-I

using reciangles. (d) H:ndWfi;ing at 70-Io-1 using squ_res. (e) The dictionary for Fig..5(c). (f)

The dicfiona D, for Fig. 5_dl.

..o

(0

tree search time. We experimented with different straIegies

of searching the forest of 4 trees but no one proved to be

significantly bener than searching in the order: t4./3.12, t]

where the search o_oes from one tree to the other ,'gn/.v _f no

block was found.

To evalume the performance of our algorithm, v,,e used

the test images described in Fig. 4. For each lest image.

we adjusted the threshold to oet three compressed files,

one of very good quali_y, one of good quality, and one of

fair quality; the results are shown in Table I. Although the

compression obtained is nearly identical whh Ihe basic full

search algorithm, the execution time for a 4 K dictionary,

was about 60 times foster (roughly spe:akin._., we now

use seconds rather than minutes to encode on a UNIX
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the "activity" in a region of the image as the ratio betu, een

the variance (1o the mean) V and the mean .'k,[ on this

region. From experimentation, we can say that if the ratio

A is smaller than 4_-5%, then the area is smooth and we

use a smaller distortion threshold of 0.4,,d for this area;

if 5% < .4 < 10% we use an intermediary threshold of

0.6*d, and if .4 > 10% than the area is active and ,0,,e use

the entire threshold d. Figure 6(a) shows our al,oorithm on

the WomanHat image, using a constant dislortion threshold

at lO-to-1 compression. Figure 6(b) shows the results of

the method described above at 10-1o-1 t:ompression. For

comparison, Fig. 6(c) shows JPEG at /O-to-] compression,

Similarly, Fig. 7(a)--(c) shows the ChestCAT image using

constant distortion threshold at 10-to-1 compression, the

method described above at 10-Io-1 compression, and JPEG

at ]O-to-1 compression. ]n both Figs 6(b) and 7(b). the

visual quaihy is much improved (especiaalv, on smooth

areas such as the shoulder in the WomanHaI im;-ge and

the smooth pan with the "'X" in :he Ches_CAT image). By

comparison, note that in Fig. 7(c) JPEG is blocky and :he

edges are not prese_,ed: however, for WomanHat. Fig. 6(b)

and (c) has similar visual qualiD,.

V'[. CURR_NT RESEARCH

We are currently working on a number of extensions

to the basic approach presented in this paper. First we

are continuing experiments _o beuer understand how

different heuristics affect performance in terms of both

speed and quality. Second, parallel algorithms that run

in nearly O(V_.V) time with O(_.V) processors are

possible. Third. of imerest are formal proofs addressing

compression-fidelity tradeoffs.
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Split-Merge Video Displacement Estimation

BRUNO CARPENTIERI AND ]'AMES A. STORER

Invited Paper

MotionComp_nsar_nisone ofthemosteffectivetechMques
usedinimerframedatacompredsion.Inthispaperwe presenta
parallelblock.mmcMn&olgorith,'nforesfima_n&in:erframe dis.
placement ofblocka wil_ minimum error. Tile algorflhm is designed
for a simple parallel amhilecture toprocess video in real time. The
bloc_may havevariable¢i:eandshapedependingona split-and.
merse tccAnlque. The algorithm perform# a se&mentatlon of t_
im_e lnlo regloett (objectx) mo_ng in lhe $_m'_¢direction and uses
this _owled&e ro improve the tranxmlaaion of the di_placemem
_ctors._ segr_ntation iden@estheparto[theftame"ac_ve"
withrespecttoO_epcev_usframeandprexerve_someofthespa_al
correlationbetweenblock_.

L ]N'I'RODUCTION

Data Compression it essential for the storage and lyans-
mission of digital video, where large amounts of data
must be handledby deviceswith a limited bandwidth.

For example.,digitalHigh DefinitionTelevision(HDTV)

requiresmore than I billionbitsper second in uncom-
pressedform. Knowl_ge of motion or displacementof

groups of plxcls in mccessive frames can be the basis of

vld_ocompressionalgorithmsand canbe usezlinaddition to

olhexclassicalsingle-imagecompressiontechniques,such

as_ansform,intexpolafion,and quantizationalgorithms,to

greatly reduce the Lmonnt of dam wansmitt_ Here we
will restrict our attention to the translational componcm of

the motion and refer to the algorithms that compute the
traj_cwry informationof a pixelor a blockof pixclsas

displacement eatimation algorithms.
Block-Matching Displacement Estimation Algorithms di-

vide a frame into a number of rectangular blocks and
compute a displacement vector for each block by correlating
the block with a search area in the previous frame; see J_n
and Jain [4], Koga et al. [7], Srinivasan and Rao [9].

In this paper we prescnt a rr.al-timc parallel algorithm
for displ_x.rncnt estimation using a two-dimensional grid
m-chitcctttre mad then show how the algorithm wan be

implemented on a pipe. The algorid_n is based on a block-
matching approach to the problem and uses a _plit-and-
merge technique: theblocks (a_perblocka) have • variable

s_._ that is determined ateach stepof tl_algorithmfrom

previousstepand theinputdata.Infact,r_ algorithm

performs a segmentation of the h'm_e into are_ moving in
th_ same direction and usesthisimowledge to improve the

wAnsmlssion of the displacement vocttx_ of the elementary
blocks.

In the next sectionwe outline the r,equemlal fixed-

sizeblockdisplacementes_madon algorithmpresentedin

lain and lain [4]. In Section [] we present our t_w
algorithm.SectionIV isdevotedtoitsanalysis.SectionV
_scusscs expeTimentalresults, Scctlcm VI outlines how dm
segmentationoperatedby theSplit-Mergetechniquecanbe
thebasisof a fullvideocoder.In SectionVII we present

our conclusions.

If. IMAOE CODI_O AND Dls_.AC:l_m_"r Es'rIMA_ON

Inthissccdonwe reviewthe fi.xcd-sizcblockdlsplac_-

mcnt estimationalgorithmproposedby Jalnand Jain[4].

This algoriff_nand itsassumptionshave been a guideline
for more recent work in the field, simi_ approat:he_

ar_ taken by Koga et al. [7], Srinivas,_ and Rao [9],
Kappagantula and Rao [5], Puri ct al. [8], and Ghanbati

[3].
In a typicaldisplacementestimated image codingalgo-

rithmthefringeissegmented intoblocks.For eachblock

a displacementvectoriscomputed and sentto the decode,
moreover, the cncoder compums the diff_ bex_cca
the the origh_.al frame and the flame that the decoder
could reconstru_ from the displacement vectors, and
this difference image to the decoder. All dam sent fz_m
the enceder to the decoder may eventually go through an

additional entropy coding phase.

ManuKa'iptmc_ved November I, 1993;revisedJtnum'y15, 1994.
B. C._l_cnticriis withD_mcnto dl Infcrmat_cao4 Applicazioni.

OrtiverlltlldJSa}emo.INtO_lBm_nissi(SA),lily.
L ,6,. Stor_r is with _e Computer ScienceDepanmem,Brtndcis

University,W_lthanxMA (P.25USA
IEF..E_ Numb_ 94012_9..

A.DisplacemeraEstiman'on

The algorithm proposedin lalnand Jain[4] sc_'_.s

an image intofixed-sizesmallrectangularblocks,each

blockassumed to be undergoingindependenttranslation.

001g-9219J94_04.00© 1994
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If these areas are small enough, rotation, zooming, etc., of

larger objects can be closely approximated by piecewise

translation of these smat]er areas. The goal is to approxi-
mate interframe motion by piecewise translation of one or
more areas of a flame relative _o a reference frame. Let

U be an .'ff x .V size block of an image and Ur be an

(M" + 2p) x (N + 2p) size area of a reference (neighboring)

image, centered at the same spatial location as U, where p

is the maximum displacement allowed in either direction

in integer number of pixels. The algorithm requires for

each block a search of the direction of minimum distortion

(DMD). i.e.. of the displacement vector that minimizes

a given distonion function. A possible mean distonion

function between U and Ur is defined in Jain and Jain [4] as

3t N
1

rr,=] n-----1

-pSi.jsp

where 9(.z) is a given positive and increasing distortion
function of z. The direction of minimum distortion is given

by (i.j). such that D(i.j) is minimum.

One problem of this approach is that finding optimal

displacements requires the evaluation of D(i.j) for (2p +

1) x (2p + 1) directions'per block. For example, even for

motions up _o 5 pixels along either side of the axes a

search of 121 positions per block is required. The solution

proposed in Jain and Jain [4] is to assume that _he data are

such that the distortion function monotonically increases

as we move away from the DMD along an}, direction in

each of the four quadrants. "l"nis assumption makes possible

a search procedure for the DMD that is an extension in

_wo dimensions of the standard logarithmic search in one

dimension (see Knuth [6]).

In the next section we present a parallel algorithm that

eliminates _he need for this assumption and _hich can

be implemented to run on-line on a practical parallel
architecture.

Ill. A SPLIT-MERGE PARALLEL

BLOCK-MATCHING ALGORITHM

In this section we present a new parallel block-matching

algorithm for displacement estimation based on a split-and-

merge technique taking advantage of the fact that groups
of blocks often move in the same direction (for instance, if

they are part of the same object or part of the background).

The encoding algorithm computes the displacement vec-

tors (in parallel) and sends them in compact form to the
decoder. The decoder receives the data and constructs an

approximate version of the image, which will be corrected

in the next stop of the general encoding algorithm.

A. The Model of Computation

To process frames of n pixels each, the encoding algo-
rithm employs a _ x _ grid of processors. 1 _< At _< n,

each having O(n/.\:) local memory. Although all of what

we present is well defined when .V << r_. to simplify our

I "3

, I '*"--""t

t.

Fig. l. Displacement estimmion encoder.

presentation we shall assume N = kn for some 0 < h < 1
(and here each processor has O(1) local memory). For

decoding we will need only a single processor with O(n)

memo_'.

Each frame is divided into ,V rectangular blocks num-

bered in the same way as the processors: we assume that

at time t processor i receives as input block i from the tth

frame. Since each processor corresponds to a block, and

vice versa, from now on we will use the terms processor

and block interchangeabl.v.

The encoding algorithm implies the use of a sequential

co,re'oiler to monitor the execution of the algorithm. The

controller will need O(.V) dynamic memory, and will

perform communication operations only with processor 1.
We will identify this controller with processor 1 itself

by allocating to this processor an additional O(.'V) }ocal

dynamic memory. The encoder computes the displacement
vectors and transmits them in a compact form to the decoder

on a serial line. Figure I depicts our model of computation.

The input frames come to the frame buffer on a high-speed
communication line, in time proportional to n. The data

flow from the frame buffer to :he grid architecture that

performs the search of the optimal displacement for each
block. The communication between the frame buffer and

the grid architeclure has to be performed fast enough to

allow the grid time to perform the necessary computation
on the actual frame before receiving the next frame. In

fact, the bold arrow implies that this communication should

be performed either in parallel or on a serial line with

a speed of chin pixels per unity of time, where c is a

system-dependent constant. In Fig. 2 is shown a possible

implementation of ',he frame buffer: embedded inlo the grid.

The input is pipelined through the processors. At each step

each processor can pass the input to its neighbor and, when
necessary, can simultaneously cop), it into its own wor'tdng

memory.

B. The Encoder ,4lgorithm

Figure 3 shows the encoder algorithm at time t. Each

processor at time t computes in "parallel the displacement
of the block that it represents (in frame t) with respect 1o a

search area in frame t - 1. For simplicity we assume that

the size of the search area is exactly 3 x 3 blocks, that is,

for each processor we limit the search area to its adjacent

blocks. Processor i at time t keeps the description of the

block it represented at time t - 1 in the variable blockp_(i)
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Fig. 2. A frame buffet imp]ememvion.

(:he subscript pf is short for "'previous frame"). If at time

- 1 a number of pairwise adjacent blocks have Ihe same

displacement vector, then zt time t the)' are considered to
be a we]l-defined superblock: superMockfi) where i is the

leader of the superbloc'k (the processor wi_h minimum ]D).

]f they continue to move _e_ether in the same direction

at time L just a single displacement vector for the _hole

superblock is sent from _he encoder to the decoder. Each

processor is not aware of the shape of the superblock lO

which it belong-_, but is a'_,'are of the adjacent processors
that move in its direction (cohlock). The union of c_b!ocks

for adjacent processors that mox'e in the same direction will

define a su]_erblock. At each time t _he aigorithm can be

divided imo three steps. In Phase 1 (the cmnpule phase)

_he displacement vector for e-_ch single block is computed

and each processor compares its displacement with the

displacement of the _djacent processors. Each processor

keeps a }is:of theadjacent processors _hat move in its same

direction: cnblock(i). In Phase 3, _ hanover this is possible,

these fists will be merged w__oether into superblocks. At

time t,+ 1 a single displacement vector will be sent from the

encoder to the decoder for all the processors in a su?erblock
that still move in the same direction.

In Phase 2 (the split-and.send phase) processor 1, the

processor in the upper left comer of the grid. becomes the

controller and communicales with the others processors:

gmhering information on their displacement vectors, de-

ciding their belonging to a snperblock or the occurrence

of a split, (i.e., whereby processors ]ea\,e a superblock

because-their motion differs from that of the majority.

We address the complexity of this operation in the next

section.). Being aware of all _he displacemem vectors for

the N processors, the controlJer, for each superblock _ests
if splits have occurred and constructsthe list-of.splits, i.e..

the list that specifies which processors that were assumed

to be pan of a superblnck are no lone_or pan of it because

9.'2 (_IOINAL PA_E

• • ft' _, ",

for ur.h pr_:es._or i in parMlel do"
be£1n

t) for every adj_nt pro_.tssm e._it_r
do get bloci _, (nci$_or)

:) COMPb-TE (f_ll Se..&,_) iL_ O_= _pta_mcnt vt..'_ _(i)

_) set toblocLfi) - _: of _jk_c_: ]:n'C_O_ neighbor ._._.c,h

Phage 2_ fgPLIT end _¢E_n)

rOno-Nl,'r _o

begin
1) fori =t ton do

tel ¢_(i) anti $_ott it iatO the _cc_a repyescn'_g i in

the Iv#¢rb_tk tO _i'J't i he|ongs

2) foe each $_erMott do
begin

2,t) SPLAT the _uperb_ck into_,ouDS of proeesso.'sj
havi_g the sa.n_ dkspla_mem v_m _ _/1

2._) tel predn ht the ]:_c_s$_ _h minimum IX) in the la.,-$tt/'rou#

2.3) itpmin is nm the Ic_del of the _tnt_t a_erbiock then mtke a
new su_erbk_ck _mth ir.a_m'_mdn a_d dl_ltl::eme_t vttaor_ f/m-,/e,)

")") It, d the o',.h_ group_ tO li_.of.aplit$

2.._) Jtpm2_ is no_ the ]r._er of the t_."renl ,ruperbl_k then

delete the _.,'nmt superNofk
._) irJcr, gak Uis:.o/.spli:s )> T then for i --IIoN dO SEND_(i)

else
begin

$F.._D lis_.of._pli'd

for e_:h _u_erbloc_ (i) do
$_.'D _ (s_erblock (i ))

tnd

end

ton_oDe_ do

begin

]) for i = 3 to N do ge: cobloct (i)
_) from the t_l)$oc_ al time t ¢o._'_'_c_ the ne_ sapcrblotl_ _ lime t ,]
tad

Fig. 3. "lne algorithm at time t.

the), are now moving in a different direction with respect

to the rest of the superblock. If the length of list-of-splits is
less than a threshold T. then the controller sends the list-

@splits and the displacement vectors for the superblocks;

othem.ise, it sends the displacement vectors for each single
block. The threshold monitors the efficiency in terms of

amount of data sent to the decoder of sending both list-of-

splits and the supe,'blocks displacement vectors, instead of

the displacement vectors for each single block.

In Phase 3 the superblock s at time t + 1 are built
from the coblocks. "]"_e encoder and the decoder maintain

dynamically a list of the superblocks, i.e., of which block

belongs to which superbloek. No communication between
the encoder and the decoder is needed to maintain the

description of the superblocks: the decoder has enough

information to compute the shape of the superblocks at time

+ 1. At every time _ a list of the positions in which a split
has occurred is sent from the encoder to the decoder: in this

way the decoder is able to decode the displacement vectors
sent from the encoder.

C. The Decoder A/gorifl_m

The decoder receives at time _ the info,%n,afion sent from

the encoder during Phase 2. It has computed at time t - 1

the superblocks at time _ and therefore it can assign +o

each block the correspondent displacement vector. Finally,

it has enough information to compute which blocks will be
in which superblocks at time t + l. The decoder is not a

parallel machine: one single processor suffices to perform
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the necessary, operations. The decoder uses O(.'v') memory
to decode each frame in 0(.\:) time.

D. Splits and Displacement Vectors

One of the critical points of the algorithm is the commu-

nication from the encoder to the decoder of the list-of-splits,

i.e., of the list of the processors that at time t belonged to

a superblock but no longer do, and of their displacement

vectors. There are two requirements that the list-of.splits

must satisfy: it must be computationally easy to build, and

it must have a concise encoding; other, vise, sending only

one displacement vector for each superblock would not be

convenient because of the necessity of sending aIso the
list-of-splhs.

The list-of-splits is dynamically built: In line 2.4 of Phase

2. groups of processors are added to the list. a single

displacement vector per each group. We keep a hash table

of the possible displacement vectors: each time a group
is added to the list `,`,e compute the hash value of its

displacement vector and we associate :o the corresponding
entry in the table this displacement vector and :he list

of the processors in the group. This !ist begins v ith the
]D of the smaller processor, :hen the ]D's of :he other

processors follow, each coded in _erms of the displacement

v,hh respect to the previous one. Because the processors

were pan of the same superblock and are still moving in the

same direction, we can expect their ]D numbers zo be very

close and we can get good compression whh this simple

heuristic. When the encoder sends the lisa-of.splits, it sends

each nonzero entry in the table.

There might be more than one solution to the compu:ation
in Line 2 of Phase t. The block examined could match

optimally more than one block in the search area. or else

we may want to consider Jn the next Phase more than
one direction in which the block can move. in such a

v.,ay to have more options ',.,hen it is time to shape the
superblocks. A way to do this is to save for each block

all the displacement vectors that allow an error less than a
threshold t when the block is matched in _he search z.rez.

In this case. in line 1 of Phase 2, the processor sends :o

the control}or not only a single vector but a list of possible
vectors.

To determine the eventualhy of a split, in line 2.1 of Phase

2, the controller shall compute in which of _he possible
directions the majority of the processors move. The number

of possible directions is finite and the computation can

be limited in advance by limiting the length of each list

of possible vectors to an appropriately chosen constant

L. Phase 3 is not affected by considering more than

one displacement value per vector in Phase 2: a single
displacement vector per block has been sent in Phase 2,

and now only that vector has to be considered in Phase 3.

E. Implementation on a Pipe

Figure 4 shows how the algorithm can be implemented

on a pipe. The inputs to the pipe are the actual frame and

the previous frame reconstructed by the decoder. The input

Comrolltr
A

[D-CI-qD-C3-+C]+ 

I

]nput

Fig. 4. Imp]emen'z;icn of the alzo:';;h.m on a pipe archi_eev,re.

flows in tine_ time through all the processors. Each proces-

sor has to construct the search area by using the information

from the previous frame: after O(.V) time ever;,, processor

has available both the block it is representing at the current

time and the search area in the previous frame.

The computation involved and the details of the algorithm

are analog to the grid implementation.

IV. ANALYSIS OF THE ALGORITHM

In this section we analyze :he encoder algorithm in terms

of complexity, fidelity, and compression. The analysis is

done for the grid implementation, similar arguments hold

for the pipe implementation.

A. Complexi D"

Let N be the number of processors in the grid, where
.V = kn for 0 < k < 1. In Phase 1 lines I and 3 involve

direct neighbor communication and take constant time. The

computation involved in line 2 is the most expensive part of
Phase I, but it still :akes cons:ant time. where the const_t

depends on the size of the search area. The fez loop in line

1 of Phase 2 might seem to involve O(N 2) communication

on a grid architecture: processor 1 has _o interact with all

the other processors. If we number the blocks by row and

column this re_': loop can be easily pipelined as showed in

Fig. 5. Therefore, processor I will always interact at each

iteration of the loop whh an adjacent processor: processor

2, and the loop will take O(N) time. The complexity

of line 2 (2.1-2.5) depends on the number of processor

ID's examined. The superblocks are pairwise-disjoint sets;

therefore, line 2 has a time complexity of O(N). Line 3

involves also O(.V) time.

The for loop of line 1 of Phase 3 can be pipelined and

takes O(.V). For each vector the coblocks have a constant

size (each processor has at most eight neighbors), therefore,
line 2 has time complexity O(N).

In fact. the whole algorithm has at each step t a time

complexity O(5") = O(krt), i.e., linear in the size of the

input, it is an on-line algorithm.
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Fig. 5. Pip, lining.

Each processor, with the exception of _he controller.

needs a constant amount of memoD,. The controller needs

O(X) dynamic memo D' to represent the s:_?erblocks and

_o store the cohlocks and the displacement vectors.

B. Fidelk3."

The displacement _eczors computed by our .q_orhhm are

at least as accurme and _.enerally more than ;hose computed

by zhe sequemia] ai_o,'ithm: we do not assume an).o priori

hypothesis 1o simplify the search, rather 'ae search all the

possible directions.

C. Compression

The amount of data sent from lhe encoder _o the decoder

Jn our a}gorithm is in _he worst case equal To _he amoum

sere by the fixed-size block algorithm, but the algorithm

has lhe possibi]ily _o transmii much less daia.

The size of the blocks is chosen in ._uch a w_y as _o

approximate different movemems of an object by piecewise

translation of the blocks themselves. An object may be

composed of a }a_e number of b)ocks, a])of _vh}cbmove

}n the same direction, even in the case when the motion

in the sequence Js due lo a mo\'emem of :he camera, if

neighboring objecls move in the same direction wi_h the

same speed. 1hey will belon_ lo the same superb]ock. In

fact, a simple but impor'tam case is when ]ar_e _roups of

pixets comprise "'Background" scenery tha_ s_;-ys relatively
constant from one frame to lhe next.

The superblocks will ._-_enerally consist of many proces-

sors, the length of the list-of-splits will be negli_ib]e wizh

respect to the czrdinaliD' of "_he superblocks, and at each
_ime t a sensible reduction in size of the data sent from

the encoder to the decoder is expected. However. when the

length of the lisl-of.spii;s becomes bi_$er than the _hreshold

T, the controller acts as in the fixed-size algorithm and sends

to the decoder one displacement vector per block, starting

from 'F_(]) to G(_), instead of sending lis;-of.splirs and
the displacement vectors for 1he superhh)cks. ]n this way.

it sends the same amount of data that 1he a]__.orithm in .lain

QAIQINAL PAG_ lib

OF POO QUALITY

First and last frame of the ._equenc," "'Salesman."

Fig. 7. First and last frame of _.he sequence "'Fo_.."

Filb $. Firsl and lasl frame of the sequence "'Kids."

Fig. 9. Firs: and last frame of :he .,,¢quence "'Mc-,um_in,:."

and .lain [4] _,'ouldhave sent. The decoder can infer that the

displacement vectors received refer to the blocks, and not

to the superblocks, from the number of vectors received.

V. EXPERLMENTALRESULTS

We have performed experiments with the fol]owing dma

set (Fi_s. 6-10 show the f,rst and the last frame of each

of these sequences):

Salesman

This sequence is one of the s_andard _est sequences in

video compression, h ]s currently available for anonymous
ftp at ipl.rpi.edu and consisls of 448 frames. 360 x 288, 8

bits per pixel. I_ come,ins relatively little dc_:_il or motion,

PROCEEDI\'GS OF THE IEEE. VOL 1;2. 'vO h. JUNE I._94



typical of the head and shoulo:, sequences common in

videoqelephone applications.

Fog

From the motion picture "Casablanca," the final scene

when Humphrey Bogan _..._dIngrid Bergman say good-bye

in the fog at the airport. This sequence is composed of 60

frames, 152 x It4, 8 bits per pi×el, digitized at a rate of

12 frames per second. There is a considerable amount of

noisy movement due to the foggy background.

Kids

From the motion picture "It's a Wonderful Life," it is
one of the first scenes, where "kids (the main characters as

children) are sining at a desk. This sequence is composed

of 100 frames, 152 x 114, 8 bits per pixel, digitized at

a ra;e of 12 frames per second. _'_.,ere is a fair amount of

movement due to the presence of el-nee characlers.

Mountains

From the motion picture "'The Sound of Music." one of

the final scenes• where the main characters are walking in

the moumains. This sequence is composed of 60 frames,

152 x 11_, 8 bits per pixel, digitized at a raze of 12

frames per second. The scene involve a noticeable amount
of movement.

Pastorale

From the motion picture "Fantasia." a scene from the pan

of the movie illustrating Beethoven's 6th Syimphony. This

sequence is composed of 60 frames, 152 x 114, 8 bits per

pixel• digitized at a rate of 12 frames per second.
We define, as usually, the SNR correlation (in decibe!s),

between two frames X and Y. of dimension 3/" x .V as

SNR(X,Y) = lO x log_.0 _<"J"_<"'
3-" (x(;.5) "- Y(7.:))-

i<3/.j<.v

To describe the amount of movement present in each of

the test sequences, Fig. 11 presems for each sequence the

SNR con-elation between pair of consecutive frames. On uhe

Y" axis we plot the SNR correlation, in decibels, between

a frame and the previous one, on the X axis the frame

number. We can see, for example, that in the sequence

"'Kids" and in the sequence "Mountains" (Fig. l l(c), (d))
there is at first a higher amount of movement (the first 20

frames of "'Kids" and the first 30 of "Mountains"), and then

a lower amount of motion. Therefore, the graphs show very

low points for the first pan of the sequence and then a brisk
increase and a smoother behavior. In the sequence "'Kids,"
this is due _o the fact that in the first 20 frames the blonde

girl moves from the ]eft corner of the picture and sits down

at the desk while the boy _ets closer, then in the rest of the

sequence the two girls and the boy move slightly and chat.

In the sequence "Mountains," at the beginning people are

$81e$fftlln

!
_DUnlIlifl$

f:o_ Ki_s

_l_lOrll}l

Fig. 11, .Motion in the lest sequences..\" ---- frame number. }" =

SNR (dB) correlation with the previous frame.

Sequence

Salesman

Corrtlalion

(Pr,.iout F_,m¢}

$ ".11

Foil ScJrch bSS

v$

Split Merge bs4

Full Stsrch bs4

v!

Split Merge bs"

S,_l[

;2,91

$**1 $IZ[

• : t 7.:.5

; 300

13t._

$IZt

[ -,
: 37_1

.Vlou nlain$ ]9_1 ,'b

Fog ._._.29 ,'b :.(:_ : *_ _.._,,", . '_
: _ _.06 _.l

Kids _.¢ _' "b ",,..at _

P_$1orale ..2179 _b

._

: _

: 931

; 93]

: rs_:o

Fig. 12. Comparison with the slandz.rd full search, fixed-size

block, altoflhm.

walking fast to the top of the hill but at the end they slow
down and lure to the mountains.

Figure 12 shows, in a table, the results we have ob-

tained comparing our algorithm to the standard full search

algorithm. The first column of the table identifies the

sequence, the second column repons for each sequence

the average SNR (in decibels) between consecutive frames
as a measure of their correlation. The third and fourth

columns present the results of the comparison between the

full search a;gorhhm and the Splh-Merge algorithm for the

_est sequences. We have run the full search a}gorithm with

block size 8 (8 pixels by 8 pixels blocks) and block size

4 (4 pixe]s by 4 pixe]s blocks) and we have reported in
the first subcolumns of the third and fourth columns the

average SNR between the original frames and the prediction
obtained. Then we have run our algorithm setting the

parameters in such a way to achieve that same average SN'R

and in the second subcolurmas we have compared the size

of the predictions, i.e., the number of bytes needed to send

the prediction from the encoder to the decoder assuming no

lossless compression is performed.

As can be seen in Fig. 12, for the same SNR, our

algorithm has in general a noticeable saving in size respect

to the full search algofthm. In the sequence "Fog" the

foggy background produces noisy effects on tbe segmema-
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(z) (b)

Fig. 13. Sequence "'Kids."comparisonof Full Sezrchblock size
8 (a) andSplit Mer_e initialblock size ,l (b). X : frame number,
"Y"= SNR (riB).

Fig. ].1. Sesmenl_lion of the frames "Sa]esrr,an" }CO.200. 300.
447 imo superblocl.'s, the initial block size is 4.

lion peffo,,"med by she Sp]h-Merge a]oorilhm, those effects

are particularly relevam when we use a very small initial

block size (2 pixe]s by 2 pi×e]s). This is why the Sp]i_-

Meroe algorithm ompefforms _he full search algorithm in

all experiments bm in the case of the sequence "'Fog" and
initial b]ocksize 2.

While our ana]\.sis has been done in _erms of average

SNR. it is true _hat _he al_orilhm performs equally well

on a frame-by-frame basis with respect _o the full search

algorffhm. For example, for the sequence "'Kids." Fig. ]3

shows the SNR values, frame by frame, obtained by the

full search aloorithm, wilh block size 8, and the values

obtained by the Split-Merge algorithm with initial block

size 4 and parameters set 1o achieve the same average
SNR as the full search algorithm. This is true also for all

the other sequences tested. On a frame-by-frame basis, the
Split-Mer_oe al_orffhm behaves almost exactly like the full

search alooriihm.

VI. SPLITSAND VIDEO CODING

This lechnique suooests a complele video compression

algorithm based on the different levels of action the are

generally present in a video scene, identified as "'splits" and

"superblocks." In fuel. the se_memafion of the frames imo

superblocks and splits can be _he kernel of a complete video

compression syslem. The locations of _he splits identify the

pans of lhe frame "'active'" with respect Io lhe previous

frame while the segmemaion imo superblocks preser_,es

some of the spatial correlation between blocks and avoids

some "'squaring" effects in the prediczed frame.

In Carpentieri and S1orer [2] we have presented a video

coder based on this Split-Merge displacemenl estimation

technique. The video coder uses the splits and superblocks

information to improve the error correclion module: two
different thresholds are used to determine if a block needs

to be correcled, depending on the block being a split or

belonging to a superblock: this would not be possible by

using the fixed block displacement estimation algorithm

which has no notion of spatial correlation between blocks

or of active parts of the frame.

Figure 14 shows a segmentation of four frames from the

sequence "'Salesman," into superblocks; the initial block

size is 8. Blocks belonging to the same superblock have

t.he same _one of gray. The splits are depicted by blocks

having ahemaing sequences of black and white pixels.

"Fne splits in Fig. 14 correspond to the parts of the scene

that are active in the transition between the previous frame

and the actual frame. In fact they are concentrated in the

po=ion of the picture relative to the head of the salesman,

_o his ,hgh_ hand, and to the object in his hand.

VII. CO._CLUS}O._

We have presemed a new on-line parallel algorithm for

disp!acemem estimation based on the block-matching ap-

proach, as well as an on-line parallel implememation of this

algorithm. At each time t both the decoder and the encoder

have available _he description of the superblocks computed

a time t- 1. Each s_pcrblock is a set of contiguous

blod,:s that move in the same direction. The partition of

the image imo superblocks corresponds to an approximae

segmemaion of the image imo areas (objects) that move

in the same direction. The quality of the approximation

depends on _he granularity chosen (i.e., the size of the

No:ks and _he setting of the imernal parameters). Our

algorithm uses _his knowledge of the segmentation of _he

frames _o optimize the _ransmission of the disp]acemem
vectors.

Segmenting frames imo superblocks preserves the spatial

corre]aion between the blocks in the superblock. This may

improve the visual quality of the prediction. Because the

splits represent blocks _hat are in a certain sense "'new"

with respect _o the previous frame, a differem degree of

con'ection accuracy can be used for blocks tha_ are splits.
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